Explicit Weil-pairing for Drinfeld modules

نویسندگان

چکیده

The goal of this paper is to define an analogue the Weil-pairing for Drinfeld modules using explicit formulas and deduce its main properties from these formulas. Our result generalizes formula given rank 2 by van der Heiden works as a more explicit, elementary proof Weil-pairing’s existence Heiden.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lehmer Inequality and the Mordell-weil Theorem for Drinfeld Modules

In this paper we prove a special case of the Lehmer inequality for Drinfeld modules which will enable us to extend the results of [6] and [8] to certain infinitely generated fields.

متن کامل

The Lehmer Inequality and the Mordell-weil Theorem for Drinfeld Modules

In this paper we prove several Lehmer type inequalities for Drinfeld modules which will enable us to prove certain Mordell-Weil type structure theorems for Drinfeld modules.

متن کامل

Siegel’s Theorem for Drinfeld Modules

We prove a Siegel type statement for finitely generated φsubmodules of Ga under the action of a Drinfeld module φ. This provides a positive answer to a question we asked in a previous paper. We also prove an analog for Drinfeld modules of a theorem of Silverman for nonconstant rational maps of P over a number field.

متن کامل

Integral Points for Drinfeld Modules

We prove that in the backward orbit of a nonpreperiodic (nontorsion) point under the action of a Drinfeld module of generic characteristic there exist at most finitely many points S-integral with respect to another nonpreperiodic point. This provides the answer (in positive characteristic) to a question raised by Sookdeo in [26]. We also prove that for each nontorsion point z there exist at mos...

متن کامل

2 2 N ov 2 00 4 DRINFELD MODULAR CURVE AND WEIL PAIRING

In this paper we describe the compactification of the Drin-feld modular curve. This compactification is analogous to the compact-ification of the classical modular curve given by Katz and Mazur. We show how the Weil pairing on Drinfeld modules that we defined in earlier work gives rise to a map on the Drinfeld modular curve. We introduce the Tate-Drinfeld module and show how this describes the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Number Theory

سال: 2021

ISSN: ['1793-7310', '1793-0421']

DOI: https://doi.org/10.1142/s1793042121500809